Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 38-46, 2023.
Article in Chinese | WPRIM | ID: wpr-962623

ABSTRACT

ObjectiveTo investigate the effect and mechanism of modified Shuyuwan (SYW) on hippocampal myelin sheath injury in vascular dementia (VD) model rats. MethodSixty male SD rats of SPF grade were randomly divided into sham operation group, model group, and high-, medium- and low-dose modified SYW groups, with 12 rats in each group. The VD model was induced by bilateral carotid artery ligation in rats of the groups except for those of the sham operation group. After modeling, rats were screened by the water maze test, followed by drug treatment by gavage. Specifically, rats in the modified SYW groups were treated with modified SYW at 10, 5, 2.5 g·kg-1·d-1, accordingly, and those in other groups were administered with the same amount of normal saline. After intragastric administration for 28 days, the spatial learning and memory abilities of rats were detected by the water maze test. The hippocampal neuron structure was observed by hematoxylin-eosin (HE) staining. The content of hippocampal tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), and glutamate (Glu) was observed by biochemical detection. The hippocampal expression of myelin basic protein (MBP), astrocyte activation marker glial fibrillary acidic protein (GFAP), and connexin 43 (Cx43) was detected by immunofluorescence detection. The myelin sheath structure in the hippocampus was observed by the electron microscope. The α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) and Cx43 protein expression was detected by Western blot. ResultCompared with the sham operation group, the model group showed prolonged escape latency (P<0.01), decreased times of crossing the original platform and percentage of target quadrant detention time (P<0.01), disordered neuron structure in the hippocampal CA1 region, loose myelin sheath lamella with blurry edge, up-regulated expression levels of TNF-α, IL-6, and Glu in the hippocampal CA1 region, especially Glu (P<0.01), reduced expression of AMPAR (P<0.01), increased protein expression of p-AMPAR and Cx43 (P<0.01), significantly dwindled protein expression of MBP in the myelin sheath, and enhanced fluorescence co-labeled by GFAP and Cx43. Compared with the model group, the modified SYW groups showed shortened escape latency (P<0.05), increased times of crossing the original platform and percentage of target quadrant detention time (P<0.05), closely arranged hippocampal neuron structure, denser myelin sheath lamella with clear edge, down-regulated expression levels of TNF-α, IL-6, and Glu in the hippocampal CA1 region, especially Glu (P<0.01), up-regulated AMPAR (P<0.01), reduced protein expression of p-AMPAR and Cx43, especially in the high-dose group (P<0.01), significantly elevated protein expression of MBP in the myelin sheath, and weakened fluorescence co-labeled by GFAP and Cx43, especially in the high-dose group. ConclusionModified SYW can improve the learning and memory abilities of VD rats, and the mechanism may be related to the inhibition of Cx43 expression, reduction of the release of Glu, inhibition of AMPAR-mediated inflammatory response to reduce the production of astrocyte marker GFAP, and promotion of the expression of MBP protein to alleviate myelin injury.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 43-53, 2022.
Article in Chinese | WPRIM | ID: wpr-940451

ABSTRACT

ObjectiveTo explore the effects and related mechanisms of modified Shuyuwan on the decline of learning and memory in Alzheimer's disease (AD) mice. MethodForty 5-month-old SPF APP/PS1 mice were randomly divided into model group, Donepezil group, modified Shuyuwan group, modified Shuyuwan+ chloroquine (CQ) group, 10 mice in each group, the same background wild type C57BL/6J ten mice were set as the normal group. Among them, the modified Shuyuwan group was given the modified Shuyuwan decoction (10 g·kg-1), the Donepezil group was given the Donepezil hydrochloride solution (0.45 mg·kg-1), the modified Shuyuwan + CQ group was CQ (10 mg·kg-1) was injected intraperitoneally on the basis of the modified Shuyuwan group, and the normal group and the model group were given the same amount of normal saline intragastrically, once a day, for a total of 35 days. After the administration, Morris water maze experiment and new object recognition experiment to detect the spatial memory ability of mice. TdT-mediated dUTP Nick-End Labeling(TUNEL) staining to detect the apoptosis level of mouse hippocampal CA1 neurons, biochemical detection of reactive oxygen species (ROS) and superoxide in mouse hippocampal neurons dismutase (SOD) levels. transmission electron microscopy to observe the ultrastructure of neuronal mitochondria in the CA1 region of mouse hippocampus. Western blot to detect mouse hippocampal mitochondrial autophagy adaptor protein (p62) and microtubule-associated protein 1 light chain 3 Ⅱ (LC3Ⅱ), PTEN-induced kinase 1 (PINK1), E3 Ubiquitin Ligase(Parkin)protein expression level. Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) detection of mouse hippocampal mitochondrial forkhead transcription factor O1 (FoxO1), PINK1, Parkin mRNA expression level. ResultCompared with the normal group, the escape latency of the model group mice increased significantly, the number of crossing platforms and the retention time in the target quadrant decreased significantly, the relative resolution index decreased significantly, and the ability to recognize new objects was weakened (P<0.05), neurons in the hippocampus CA1 area decreased. The number of dead cells increased significantly (P<0.05), the level of ROS was significantly increased (P<0.01), and the level of SOD was significantly decreased (P<0.01), the morphology of hippocampal mitochondria was severely damaged, the expression of p62 and LC3Ⅱ proteins increased (P<0.01), Parkin protein expression decreased (P<0.05), and PINK1 protein expression increased (P<0.05), FoxO1, PINK1, Parkin mRNA expressions all decreased (P<0.05). Compared with the model group, the mice's escape latency was significantly shortened after the intervention of the modified Shuyuwan, the number of crossing platforms and the proportion of residence time in the target quadrant increased significantly, the relative resolution index increased significantly, and the ability to identify new objects was enhanced (P<0.05). Apoptotic cells were significantly reduced (P<0.05). ROS levels were significantly reduced (P<0.01), and SOD levels were significantly increased (P<0.05, P<0.01), mitochondrial morphology and various structures were significantly improved, p62, LC3Ⅱ protein expression decrease (P<0.05,P<0.01), PINK1, Parkin protein expression increased (P<0.01). FoxO1, PINK1, Parkin mRNA expression increased (P<0.05, P<0.01). Compared with the modified Shuyuwan group, the evasion latency of mice in the modified Shuyuwan + CQ group increased significantly, the number of crossing platforms and the proportion of residence time in the target quadrant decreased, and the relative resolution index decreased (P<0.05), the SOD level was significantly reduced (P<0.01). The damage of mitochondrial morphology and structure increased again, the expression of p62 and LC3Ⅱ protein increased (P<0.05, P<0.01), and the expression of PINK1 and Parkin decreased significantly(P<0.05, P<0.01). FoxO1, PINK1, and Parkin mRNA expression was significantly reduced (P<0.05, P<0.01). ConclusionModified Shuyuwan can effectively improve the oxidative stress damage and learning and memory ability of AD mice. The mechanism may be related to up-regulating the expression of FoxO1, PINK1, and Parkin factors, promoting mitochondrial autophagy, reducing oxidative stress, and protecting neuronal damage.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 8-14, 2021.
Article in Chinese | WPRIM | ID: wpr-906231

ABSTRACT

Objective:To observe the effect of modified Shuyuwan in amyloid precursor protein/ presenilin 1 (APP/PS1) dementia mice on cognitive and memory impairment and to explore its mechanism. Method:The 40 APP/PS1 mice were divided into model group (given Physiological saline), low and high-dose modified Shuyuwan (14,64 g·kg<sup>-1</sup>)group, and donepezil group (1 mg·kg<sup>-1</sup>) and 10 wild mice were set as the blank control group (given Physiological saline). All of the mice were administered intragastrically for 35 days. The memory and space exploration ability of mice was detected by Morris water maze, the morphology of mouse hippocampal neurons were observed by Nissl staining. The deposition of <italic>β </italic>amyloid 1-42(A<italic>β</italic><sub>1-42</sub>) in mouse hippocampus was detected by immunohistochemistry, and the expression of ionized calcium-binding adapter molecule 1(Iba1), a marker of hippocampal microglia (MG) and Nitric oxide synthase(iNOS), a marker of actived MG, were detected by immunofluorescence. The protein expression of NLR family pyrin domain containing 3(Nlrp3), Apoptosis-associated speck-like protein containing a Caspase-recruitment domain (ASC), cysteine protease-1(Caspase-1)and interleukin-1 beta (IL-1<italic>β</italic>) were detected by Western blot, and the expression of IL-1<italic>β</italic>, tumor necrosis factor-<italic>α</italic>(TNF-<italic>α</italic>)and interleukin-18 (IL-18) mRNA were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). Result:Compared with the blank control group, the memory and space exploration ability of the model group were significantly reduced (<italic>P</italic><0.05), the number of hippocampal neurons decreased, the deposition of A<italic>β</italic><sub>1-42</sub> increased, the markers of actived MG Iba1,iNOS increased, the protein expression of Nlrp3, ASC, Caspase-1, IL-1<italic>β</italic> increased significantly (<italic>P</italic><0.05), and the mRNA expression of IL-1<italic>β</italic>, IL-18, and TNF-<italic>α</italic> increased significantly (<italic>P</italic><0.05). Compared with model group, the Chinese medicine group can improve the APP/PS1 mice's space exploration ability and memory ability (<italic>P</italic><0.05), increase the number of hippocampal neurons, reduce A<italic>β</italic><sub>1-42</sub> deposition, reduce the activation of MG, and reduce the protein expression of Nlrp3, ASC, Caspase-1 and IL-1<italic>β</italic> (<italic>P</italic><0.05), and reduced the expression of IL-1<italic>β</italic> mRNA (<italic>P</italic><0.05). Conclusion:Modified Shuyuwan can reduce the expression of IL-1<italic>β</italic> and other inflammatory factors in the hippocampus of APP/PS1 mice by inhibiting the Nlrp3/ASC/Caspase-1 pathway, and relieve nerve inflammation and pathological injury of AD.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 38-44, 2019.
Article in Chinese | WPRIM | ID: wpr-801829

ABSTRACT

Objective: To explore the effect and mechanism of modified Shuyuwan neuroprotection in APP/PS1 model mice. Method: Selecting 20 male APP/PS1 mice of 5 months old and 10 wild type mice.The mice were divided into blank group, model group and modified Shuyuwan group(14 g·kg-1·d-1),drug delivery for 28 days, and blank group and model group were given the same amount of normal saline,APP/PS1 background primary neuron model and wild type primary neurons were divided into blank group, model group and modified Shuyuwan group,tunicamycin group, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) inhibitor group.The blank group and model group were given 10% blank serum, the modified Shuyuwan group was given 5% modified Shuyuwan-containing serum, the tunicamycin group and the PI3K/Akt inhibitor group were respectively added with 2 mg·L-1 tunicamycin and 10 μmol·L-1 LY294002 on the basis of 5% modified Shuyuwan-containing serum.The spatial learning and memory ability of mice was measured by Morris water maze,and Western blot was used to detect nuclear factor erythroid-2 related factor 2(Nrf2) protein expression in hippocampus.Western blot was used to detect the protein expression of endoplasmic reticulum stress related proteins glucose regulatory protein 78(GRP78), protein kinase-like endoplasmic reticulum kinase(PERK),phosphorylation (p-)PERK and apoptosis expression of the pathway proteins eukaryotic translation initiation factor 2α(eIF2α),p-eIF2α,enhancer binding protein homologous protein(CHOP), and cysteinyl aspartate apecific proteinase 3 (Caspase-3),p-Akt, Akt, Glycogen Synthase kinase-3β(GSK3β),Nrf2. Result: In vivo experiment,compared with blank group, the learning and memory ability of APP/PS1 mice in the model group was impaired(PPP In vitro experiment,Western blot analysis showed that compared with the blank group, the expression of GRP78, p-PERK/PERK,p-eIF2α/eIF2α,CHOP, and cleaved Caspase-3 proteins was increased in the model group(Pα/eIF2α,CHOP, and cleaved Caspase-3 proteins(PPPβ was increased in the model group(Pβ was decreased after modified Shuyuwan-containing serum intervention(PPβ protein was inhibited by LY294002.(PPConclusion: Modified Shuyuwan can increase Nrf2 protein expression through PI3K/Akt/GSK3β signaling pathway, reduce neuronal apoptosis induced by endoplasmic reticulum stress,improve the learning and memory ability of APP/PS1 model mice.

SELECTION OF CITATIONS
SEARCH DETAIL